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ABSTRACT 

The solution of optimum rendezvous trajecto­
ries with bounded thrust magnitude and interim 
coasting a r c s  has been obtained. The Lagrange 
multipliers, determined from the impulsive solution, 
are used as starting values. The three-dimensional 
equations have been derived for  the assumptions of 
a mass  particle moving in an inverse square force 
field in a vacuum. A practical solution time was  ob­
tained by the use of a convergence technique which 
employs the impulsive solution to generate correc­
tions to the initial multipliers. 
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THE UTILIZATION OF AN IMPULSIVE SOLUTION IN 

SOLVING OPTIMUM TRAJECTORY PROBLEMS 

WITH BOUNDED THRUST MAGNITUDE 

By Donald J. Jezewski 
Manned Spacecraft Center 

SUMMARY 

A method is presented for obtaining solutions to nonlinear optimal trajectory 
problems with bounded thrust magnitude by use of the corresponding impulsive solution 
to generate the starting values of the Lagrange multipliers. The equations were de­
rived in three dimensions for a mass particle moving in an inverse square force field 
in a vacuum. The convergence scheme which makes use of the impulsive multipliers 
has an efficient solution time as compared to a first-order perturbation technique. 

An example problem of a transfer from Earth to M a r s  for fixed initial thrust ac­
celerations has been used to demonstrate the solution technique. The number of i ter­
ations and the time required for a solution increased rapidly as the assumptions of the 
impulsive solution were violated. 

INTRODUCTION 

The solution of optimal trajectories with bounded control variables, which uses 
the indirect method of the calculus of variations, has been treated by many investiga­
tors  (refs. 1 to 5). 
which usually has unknown initial o r  final values of the Lagrange multipliers. 

This formulation results in a twppoint boundary-value problem 
The pro­

cedure has simply been to make an intuitive guess of these values. For special prob­
lems in particular coordinate frames, an experienced investigator can attach some 
physical meaning to these multipliers (ref. 6). The extreme sensitivity of the terminal 
boundary conditions to variations in the initial o r  final values of these variables is well 
known. This deterrent to the indirect solution method gives rise to other techniques 
such as the gradient o r  steepest-ascent method (ref. 7). Difficulties are also inherent 
in this method; for example, the choice of proper step size and the manner in which it 
is varied (ref. 8). The tendency of investigators is to look to other methods of solu­
tion. One interesting possibility, a hybrid optimization technique, consists of the 
method of steepest ascent for the initial phase and one of the indirect methods for the 
latter phase. 



Pines (ref. 9) suggested that the Lagrange multipliers obtained by assuming an 
impulsive solution be used as starting values. He reasoned that, "We can look at the 
impulsive solution as a limiting point in a simply connected region in the space of the 
initial conditions of the adjoint variables. " This indicates that, at worst, a solution 
could be obtained by stepping the initial thrust acceleration from the impulsive case to 
the desired finite level. 

Handelsman (ref. 4) solved two-dimensional Earth- to-Mars trajectory problems 
by use of the impulsive multipliers as starting values. The author's work is an ex­
tension of and improvement on Handelsman' s solution. The extension involves adding 
the third dimension to the solution. The improvement derived is the increased effi­
ciency, as defined by the number and time for an iteration, in obtaining a solution. 
This efficiency is accomplished not only by using the impulsive multipliers as starting 
values, but also in the convergence scheme of a finite thrust-acceleration problem. 
The method of using an approximate closed-form solution in a convergence scheme 
(feedback loop) of a nonlinear problem is exemplified in Battin's work (ref. 10) and in 
Jezewski's work (ref. 6) for the circumlunar and time-optimal trajectory problems. 
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SYMBOLS 

matrix defined in equation (78) 

azimuth angle measured from lo, deg 

terminal boundary vector 


constants defined in equation (78) 


constant defined in equation (19) 


eccentricity of the coasting ellipse 


functions defined in equations (51) to (56) 


specific impulse, sec 


logical control switch 


vehicle mass, slugs 


period of circular orbit whose radius is r R' sec 


function defined in equation (57) 


radius to mass  particle from center of attracting body, f t  
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S transformation matrix defined in equation (59) 

T thrust, lb 

t time, sec 

components of total velocity in directions in 1@,lp, and le di­

rections, respectively, ft/sec 

V total velocity, ft/sec 

‘e exhaust velocity, ft/sec 

Ve nondimensional exhaust velocity 

x,Y, z inertial reference frame, ft 

Z nondimensional velocity 

lR unit vector in the v direction 

l T  unit vector in the direction normal to the plane of motion 

1 unit vector in p ,  @, and 0 directions, respectively1
P’ 

1@’0 

CY 


P 

Y 


A 

E 


e 

K 

-A 

included angle between thrust and velocity vectors, deg 


variable defined by equation (103) 


flightpath angle, deg 


change of 


nondimensional time rate of change of latitude 


included angle between lR and 1@ unit vectors, deg 


latitude angle, deg 


switch function defined in equation (17) 


primer vector 


h l ,  X2, ...,h
6’

X
c1 

Lagrange multipliers 

c1 mass fraction 

3 
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gravitational constant, ft3/sec 2 


true anomaly angle, deg 


3.1415927, rad 


nondimensional radius 


nondimensional time rate  of change of longitude 


nondimensional time 


longitude angle, deg 


thrust pitch angle measured from local horizontal plane, deg 


thrust yaw angle measured from 14, deg 


time rate  of change of E, sec-' 

Subscripts: 

C refers  to a corrected solution 

I refers  to an integrated solution 

i, j indices 

max maximum value of 

R reference quantity 

u, v, w refer to components in 1P 1P' and 1e directions, respectively 

091 refer to conditions before and after first impulse 

2, f refer to conditions before and after second impulse . 
P in the direction of the unit vector 1

P 

below a variable indicates a vector quantity 
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Superscripts: 


a, b value of a quantity after and before an event 


R with respect to the 1
P' 

lR,and lT coordinate frame 


S with respect to the 1
P' l @ ,  

and 1, coordinate frame 

-1  inverse of a matrix . 
A approximate value of variables 

. 
Operators: 

( .) derivative with respect to time t 

( 1' derivative with respect to time 7 

OPTIMUM TRAJECTORY EQUATIONS 

The nonlinear, nondimensional equations of motion of a mass particle moving in 
an inverse square force field in a vacuum and acted upon by a thrust acceleration can 
be written in the following manner (see appendix): 

~ U ' C O S  8 + 20 zv cos 8 - p6 sin cos x cos @ = 0 

p6' + 262 + p a  2sin 0 cos 8 + -P' v cos x sin @ = 0 
V P e  

p ' - z  
V 

= o  

0 ' - 6 = 0  
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p 1 + p = 0  (7) 

andThe prime refers  to the nondimensional time T = tVRPR~ B is proportional to the 

thrust T. The state variables are the position and velocity coordinates p, @, 8 ,  
Zv, a, 6 ,  and the mass p.  The control variables are the magnitude and direction of 
the thrust Pv,, x, and q, respectively. The exhaust velocity ve is assumed con­
stant. The axis system and the associated notation is illustrated in figure 1. 

z 

Y 

X 

Figure 1.- Coordinate system and angle definition. 

For  this system of constraint equations, i t  is desirable to determine the thrust-vector 
program (bounded in magnitude) for a trajectory between two fixed positions, veloci­
ties, and t imes which minimizes the propellant consumption. The necessary and suf­
ficient conditions for an'optimum trajectory may be found in reference 1. It will suffice 
to state the variational equations and indicate their functions. 

xlt = 2 (~~g COS e + h3ti) - h 4  

h5 
x21 = -2a (A,. cos 8 - x3 sin e) + X2(>- t i t ane) 

p COS e (9) 
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I 

(a’cos 0 - 2a6 sin 0 )  
P 

+ ~ ~ ( 6 ’+ 02sin 0 cos 0) 

X6’ = 2X 1pa  2sin 0 cos 0 + A3po2 cos 20 

0 + 2a (Zv sin 6 + p6 cos 

hl h3tan x = -cos IC/, tan IC/ = ­
h2 X 2  

I4 = (X12 + A 2  + X 3 y 2  

V e
K =-Ill1 - X

P CL 

’ma,, K > O  

P ={  0 , K < O  

c = -A z ’ - h2pa’cos 0 - A3p6‘ - X4p’
0 1 v  

-A 5@‘ - h68’ - x
I-1

p’ 

Equations 8) to L4), the Euler- Lagrange equations, a r e  the first  necessary conditions 
fo; an optimum trajectory. The optimum conditions on the thrust vector are given by 
equations (15) to (18). These equations show the thrust direction to be alined with the 
primer vector -A (Lawden’s notation, ref. 2) and indicate the condition f o r  the change 
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in magnitude of the bounded thrust (the switching function ~ ( 7 ) ) .The condition for  
K f 0 (intermediate thrust arcs)  will not be considered in this study. The primer vec­
tor A- has components X1, h2, and h3 in the directions of the unit vectors 1

P’ l9’ 
and lo, respectively. The direction cosines of the thrust vector can be written as 

x1sin x =  ­141 

A2 cos x cos rc/ = -I4  

J cos xsinrc/= -In1 
This allows a replacement of the angles x and rc/ in the formulation by the primer-
vector magnitude and its components. Equation (19) results from a f i rs t  integral; Co 
is a constant if the external accelerations a r e  explicitly independent of the variable T. 

IMPULSIVE RE LATIONSHIPS 

An impulsive solution is assumed to occur in two possible manners: the external 
force acceleration approaches infinity o r  the independent variable T goes to zero. 
The form of equations (1)to (14) is unsuitable for determination of the relationships be­
tween the variables when an impulse is applied. A change in variables is made from 
T to j.i because the mass ratio has a finite variation across the impulse. Performing 
this change in the independent variables and taking the limit of equations (1)to (14) as 
p approaches infinity, the following equations result. 

A Z v =  lAVl- sin x 

*. 
p ACTCOS e = I A V ~- COS x COS IC/ (24) 

A p =  0 (26) 

A@ = 0 (27) 
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A0 = 0 


AX1 = 0 


AX2 = 0 

AX3 = 0 

AX4 = X2 Am COS 0 + X3 A 6  

AX5 = 0 

AX 6 = -pX2 Am sin 8 

The quantity I A v l  is 

This equation is not actually used to determine the magnitude of the impulse because 
the change in the mass ratios is not known a priori. The AV is determined by dif­
ferencing the velocity vectors before and after the impulse. 

i 

Because the impulse is alined with this vector, the thrust direction angles x and + 
are also specified. 
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In equations (23) to (35), the quantities p, @, 8, hl, X2, X3, and X 5 do not 

change, which indicates that the position and primer vector are invariant over the im­
pulse. The variable X5 is a constant of motion of the solution and is unaffected by the 

impulse. The relationships between the variables that change across  the impulse are 

-zVa=zVb + I A V ~sin x (38) 

a b lAyl 8 

u = u +---cos 
p COS e x cos I) (39) 

a b I -AVl
6 = 6  +-

P 
cos x s i n  I) 

a lA Y l  l eI 
X4 = X4b+X

2 - 7  
cos x cos I) + A 

3 
-

P 
cos x sin I) 

where equations (39) and (40) were used in equations (41) and (42). 

PRIMER VECTOR ON A COASTING ARC 

Lawden’s equations for the Lagrange multipliers and their time rate of change 
on a coasting arc (ref. 2) a r e  

h1 = C 1 cos v + C2 e sin v + C3f2(v) (44) L 
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(C 5 cos v + c6sin 1A = 
3 fl (v) 

sin v + C2 e cos v + C3f4(v)1 
+ cos v - C2 e sin v1 

C4 e sin v 
+ c3[,, - f 2 q  + 

f l  (v) 
f l  (v) } 

i [-c5 sin v + C6(e + cos v)1~~1 = ­
3 	 - - 2­

fl (v) 

where 


and 

f l ( v )  = 1 + e cos Y 

-cos v ef6(v)sin v 
f 2(v) = ~ 2 + 

f l  (1 - e2> 
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f4(v) = sin v ef6(v)cos v 
(54) 

f5(V) = - [1+ 
I l l  

sin v (55) 

6e tan-' -

q =  ["- e)11'2 (57) 

This se t  of equations is a function of only three quantities: the constants 

C1, C2, ..., C6 defined by the initial conditions on the multipliers and their deriva­


tives, the true anomaly v, and the eccentricity e of the coasting arc. The compo­
nents (A1, h2, and h3) of the primer vector as defined above a r e  with respect to an 

altitude, range, and track coordinate frame. The transformation to the spherical co­
ordinate frame is given as 

A S = S A-
R 

-

where the superscripts R and S refer to the altitude, range, and track coordinate 
frame, and the spherical coordinate frame, respectively. The transformation S is 
given as 

1 0 0 

S =  0 C O S E  -s ine (59) 

0 sin E cos E 

where E (fig. 2) is a negative rotation about the unit p-axis. 

1 2  



X 

Figure 2. - Angular relationship between an altitude, range, and track frame 
and a spherical coordinate frame. 

The time rate of change of this vector is given as 

where the vector 51 is the angular rate between the two coordinate frames. This vec­
tor is directed along the p-axis and may be readily verified to have a magnitude given 
as 

INITIAL MULTIPLIER DETERMINATION 

It may be noted from equations (29) to (31) that the components (hl ,  X2, and A3) 

of the primer vector a r e  continuous across an impulse. Therefore, 

hl b = A 1  a 

x2b = A 2a 
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X3b = h3a 

From the previous section the primer vector and its derivative on the coasting a r c  are 
known by equations (44) to (49). This vector is, therefore, also known before the im­
pulse. 

The Euler- Lagrange equations are a homogeneous set. This condition indicates 
that only their ratios are significant and that one of the multipliers may be chosen ar­
bitrarily. Since the multiplier X4 will remain nearly constant over the solution, i ts  

a 


initial value will be chosen on the following basis: 

r f-z<CY<zn 

r f  r f-< CY < 322 - ­

where 

CY =cos  
-'[I -i,,:,I-

This choice of sign for  the initial value of h4 is based on whether the impulse is a 
posigrade or retrograde maneuver. Using equations (9) and (33), the constant X5 
may be determined as 

h5b = = p cos e [ i 2 ( - - 6 tan 6) - x i  

1 
-20(hl cos e - h3 sin e)] 

Similarly, from equations (10) and (34) 
L 

hga = x3 v  - 2p(x16 + h20 sin e) - ph3'z 

The initial value of the mass multipliers X must be determined before a solution
P 
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can be generated. Recalling equation (19) 

and using the equations of motion, this constant may be written a s  

2 .  z+ x3(26Z, + p o  sin 0 cos e) - x4 v  - 5o - 66 - BK (69) 

where equation (li’), the relationship for K ,  has also been used. During the coasting 
portion of the solution, K < 0 and B = 0, which facilitates a solution for the constant 
C
0 

in terms of known functions evaluated after the impulse. Since Co has now been 
uniquely defined, the initial value of K ,  and hence of h may be determined from an 

CL’ 
evaluation of equation (69) before the impulse. Solving for X 

CL 

-I-x4zv+ h p  + X66 i 

The initial values of the Lagrange multipliers have now been determined as func­

tions of the state variables before and after the impulse, of the magnitude of the im­
pulse, and of the pr imer  vector and its derivative after the impulse. The determination 
of this vector and its derivative requires a solution of the constants C1,C2, ..., C6 

in Lawden’s equations. A solution for these constants requires six independent 
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equations which govern the relationship of the multipliers on the coasting arc .  The 
simplest set of equations available is 

hI0 cos $bo - h20 tan xo = 0 (71) 

Alf  cos $bf - h2f tan Xf = 0 (72) 

h30 - h20 tan $bo = 0 (73) 

AQf - h2f tan $bf = 0 (74) 

h10 If=-
sin x 0 sin x f 

(75 )  

IAV I
20 cos 0 + -

P 
cos x cos $b)(AlO.) a f 1= x

20 ( b  

cos x sin $b
P 

where the following notation has been used 

x l o  = "l(t0) 

h l f  = %(tf) 

Equations (71) to (74) result from evaluation of equation (15) at the initial and terminal 
values of the coasting arc.  Equation (75) was obtained by evaluating equation (20) at 
both impulsive times and by eliminating the magnitude of the pr imer  vector between 
the two relationships. This is possible because the magnitude of the primer vector 
must take on identical values at the two impulsive times, as is indicated by examina­
tion of equations (14) and (17). Equation (76) is equation (8)evaluated after the first 
impulse, with X4 having been eliminated by use of equations (41), (65), and (66). 
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After transformation of this set of equations into the altitude, range, and track 
coordinate frame by means of equations (58) to (61), the constants C1, C2, ..., C6 

can then be evaluated by inversion of the matrix of coefficients A.. and by solution of 
1J 


the following equation: 

The proper sign is determined from the relationships established in equations (65) and 
(66). It is noted that the values of the A4 and A6 multipliers after the first impulse 
were  required for a solution of the initial values of the Lagrange multipliers. 

CONVERGENCE TECHNIQUE 

With a technique for generating the initial values of the Lagrange multipliers
from an approximate closed-form solution, a convergence process may be established 
for the exact solution. The basis for convergence is that the impulsive (approximate) 
and nonimpulsive (exact) trajectories have solution curves which are similar, such that 
an identical change in the initial values of each will produce approximately the same 
change in the terminal boundary conditions. These terminal boundary e r r o r s  can be 
nullified by generation of corrections to the initial values from the impulsive solution. 
Convergence will occur if assumptions of the impulsive solution are not violated ex­
cessively. 

Figure 3 is a logical flow chart of the iterative technique used in the convergence 
process. A switch k governs the various phases of the solution. 

With the desired terminal boundary conditions and the switch k equal to-0, the 
impulsive solution is solved for the initial values of the Lagrange multipliers hR and 
is denoted as the reference solution. If the nonimpFlsive system of equations is inte­
grated to a terminal cutoff using the initial values A-R’ the resulting terminal vec­
tor 	 B should resemble the desired terminal boundary conditions. The e r r o r  in these-I 
conditions is indicative of the accuracy of the approximate solution. After replacement 
of the desired boundary conditions by those obtained from the nozimpulsive solution 
B = B the impulsive solution is resolved for the initial vector -A. The switch k is- -I 
set equal to +l. In the impulsive solution, a change in the initial vector of 
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I 

I 
-B 
I31 
-x 
XR 
Ac 

I 

t k = - 1  

-k = + 11 
k =  -1 

... J n 
Terminal boundary vector 

Resulting integrated vector 

Lagrange multiplier 

Reference Lagrange multiplier 

Corrected Lagrange multiplier 


Figure 3. - The use of an impulsive solution in a convergence technique. 

has produced a change in the terminal conditions of 

-A B = E I - B-

Because the impulsive solution is an approximation to the exact system of equations, it 
is assumed that the negative of this correction should produce an approximate change 
in the terminal boundary conditions of the nonimpulsive solution. Therefore, the cor­
rected initial values of the Lagrange multipliers are 

The switch k for the next and all future passes is set equal to -1. T$e procedure is 
repeated with one exception. The correction to the reference vector X-R is made with 
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respect to the previous integrated solution A4' This correction is given by 

The solution is continued in this manner until the terminal boundary conditions ap­
proach the desired conditions within some arbitrary tolerance. 

EXAMPLE PROBLEM 

To adequately demonstrate this solution technique, a fuel-optimum Earth-to-Mars 
transfer problem is solved for a wide range of initial thrust accelerations. The solu­
tion is initiated on Julian date 2 442 680 with a 213-day transfer time. The exhaust ve­
locity is fixed at l. 0231545 EMOS (Earth mean orbital speed). Convergence w a s  rapidly
obtained for thrust accelerations ranging from the impulsive case to a value of 

5.0 x 10-4g ( l g  = 32.2 ft/sec2). Solutions for accelerations less than this value 
could not be obtained without modifying the covergence technique. The variation in the 
initial values of the Lagrange multipliers with initial thrust acceleration for this trans­
fe r  problem is illustrated in figure 4. The multipliers can be noted to diverge from 
their impulsive values as the initial thrust acceleration is decreased. It may appear 
that the initial values of the Lagrange multipliers are insensitive to the initial thrust 
acceleration. In this respect, this figure is misleading. The sensitivity of the mul­
tipliers to changes in the initial conditions is obscured by the nondimensionalization 
of the problem variables. Because, for this solution technique, only the mass mul­
tiplier X

CL 
is a function of T/mo and the remaining lambdas use the impulsive solution 

multipliers as starting values, convergence will be limited to thrust-acceleration levels 
which do not violate excessively the assumptions of the analysis. For example, the 
impulsive solution is based on a thrusting logic cycle of thrust-coast-thrust. If, for a 
finite acceleration level, the starting values produce a solution which does not complete 
this cycle before reaching a terminal cutoff condition, convergence will not occur. 

The significance of figure 4 should be reemphasized concerning the problems to 
which this solution technique is applicable. It will be recalled that the equations de­
veloped in this analysis were formulated in a nondimensional form. In this formula­
tion, the particular example problem is immaterial with respect to the developed 
equations. The characteristics of the Lagrange multipliers for the investigated range 
of the initial thrust acceleration are shown in figure 4. 

A measure of the efficiency of the solution technique is the number of iterations 
and the time required for a convergence to a desired set  of boundary conditions. An 
iteration is defined as the number of corrections that a r e  made to the multipliers such 
that the terminal constraints a r e  satisfied on the succeeding solution within an arbi­

t r a ry  tolerance. For this example problem, a uniform tolerance of 2.0 x 10-4 was 
selected because all variables are nondimensionalized. The data for each iteration 
of the Earth-to-Mars transfer with an initial thrust acceleration of 9.0 x 10-4g a r e  
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.6 .7
-.l 0 .1 .2 .3 .4 .5 
In i t ia l  values of  Lagrange multipliers, nondimensional 

Figure 4. - Variation of initial values of Lagrange multipliers with thrust ac­ 

celeration �or a 213-day Earth-to-Mars transfer; Julian date 2 442 680, 

v = 1.0231545 Earth mean orbital speed.
e 
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TABLE I. - EARTH-TO-MARS TRANSFER (213-DAY)a 

Iteration no.
Variables 

0 1 2 3 4 5 6 
~~ 

VF, EMOS. . . . 0.70447625 0.70764348 0.736 13807 0.73759156 0.7394565 0.7394178 0.7395386 

yF, deg . . . . . 3.5489735 2.6832596 1.4632210 1.3113635 1.236200 1.233388 1.2288496 

AZF, deg . . . . 90.521965 90.098216 90.118342 90.123595 90.12412 90.12409 90.12396 

rF' AU . . . . .  1.7477922 1.7384044 1.6700365 1.6666388 1.662387 1.6624722 1.6621979 

eF, deg . . . . . 2.5647125 1.8270476 1.9067470 1.8395678 1.849077 1.844119 1.8451757 

qF, deg . . . . . 143.07035 142.06986 143.11270 143. 15160 143.2138 143.2086 143.21273 

kxo * lo1 . . . 0 2.8987639 3.2015208 3.1592476 3.1478997 3.145361 3.144586 3.144495 

X 2 0 '  lo1 . . . . 5.2501955 5.1380339 5.1221021 5. 1420125 5.1414238 5.1427927 5.142652 

X30 * lo1 . , * . 2.5655474 1.7708472 2.0219506 1.9684969 1.990323 1.985170 1.987014 

h50 lo1 . . . . .24761119 -, 09333626 ,00145934 .00513479 .01298817 .01273934 .01327756 

h60 * lo1 . . . . -5.3477658 -3.6911911 -4.2379409 -4.092365 -4. 1393818 -4.126159 -4.130388 

Xp; 101 . . . . 6.4003868 6.0136106 6.1206711 6. 1079195 6.117931 6.1162759 6.1170768 

t, days . . . . . 219.61825 219.15351 213.76202 213.37727 213.02954 213.02164 213.00003 

aJulian date 2 442 680. 



listed in table I. It is noted that convergence to the desired boundary conditions is 
rapid and uniform. Computer time for this solution on a CDC 3600 electronic data 
processing machine was  approximately 2 seconds. 

An initial thrust acceleration of 5.0 X 10m4grequired 20 iterations and a solution 
time of approximately 7 seconds. This indicates that, as the assumptions of the impul­
sive solution are violated, the number of iterations and the time required for a solution 
rapidly increase. 

For  a comparison with other convergence techniques, an example problem with 

an initial thrust acceleration of 3. 1X 10-1 g w a s  solved using a first-order perturbation 
technique. This convergence method required six times as much computer time as the 
present technique. 

CONCLUSIONS 

A practical technique has been presented for obtaining solutions to optimum tra­
jectory problems with bounded thrust magnitude by use of an impulsive solution to 
generate the starting values of the Lagrange multipliers. 

This simplifies the problem by eliminating the necessity of choosing the initial 
values of the Lagrange multipliers. The convergence scheme employs the impulsive 
solution to generate corrections to the initial multipliers. The technique is demon­
strated by solving an Earth-to-Mars transfer problem for a wide range of initial thrust 
accelerations. Computer (CDC 3600) solution time for the specific case of the thrust­

to-mass ratio T m = 9.0 X 10-4 g was 2 seconds. The solution time was shown to 
/ O 

increase rapidly as the assumptions of the impulsive solution are violated. In a com­

parison case with a T/mo = 3.1  X 10-1 
g, the convergence scheme was six times more 

efficient than a first-order perturbation technique. 

Lawden's equations for the Lagrange multipliers were used on all nonthrusting 
arcs. This facilitated a rapid solution of the Euler-Lagrange equations and eliminated 
the need for  integrating on coasting arcs. 

For  a problem in which the variables have been nondimensionalized, the initial 
value of the Lagrange multipliers appear to be constant for a wide range of value of 

T/mO. 

Manned Spacecraft Center 
National Aeronautics and Space Administration 

Houston, Texas, May 12, 1967 
981-30- 89- FA- 72 
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APPENDIX 

DERIVATION OF NONDIMENSIONAL EQUATIONS 

The equations of motion in spherical coordinates of a mass particle acted upon by 
the accelerations of gravity and thrust T/m are 

i r - ( u 2 + w 2 )  + - Z - mr ' G  T sin x = 0 
r 

i l +  
u(v - w tan d )  - _  cos x cos + = 0 (84)r m 

w-f- (vw + u2tan 0) T cos sin + = 0 (85)r m 

F - v = O  (86) 

r@cos 0 - u = 0 (87) 

r d - w = O  (88) 

Tm + - = oV e 

where x and + are arbitrari ly chosen control variables and Ve is the exhaust ve­

locity, assumed constant. Choosing a reference position rR and a reference velocity 

VR, defined as circular velocity at the position rR' 



- -  

the nondimensional equations of motion are 

ZV' - (z:+zw2) 
P 

(zv - zw tan e)
ZU' + zu 

P 
~ 

ZW' + 
P 

p ' - z  

P G ' C O S  8 

+x 
1 +E'v sin x = o 
P P e  

+ - 	P' v cos x cos IC/ = 0
P e  

v cos x sin II/ = 0
C1e 

= o  
V 

- zU = 0 

p e f - z  = o  
W 

p ' + P = O  

The superscript prime refers to the nondimensional t ime 

where P is the period of the circular orbit. The new variables a r e  defined by the 
following equations. 

v =-ve 

e 'R 

r
p = ­
rR 
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P' 

zv = -V 
vR 

zu = -U 

vR 

z =  W 

wTi ­

p = -
m 
m 
0 

(101a) 

(101b) 

(101c) 

The equations of motion are further transformed by letting 

This change of variables results in the following nondimensional equations in terms of 
the variables Zv, 0, 6, p, 0, 0 ,  and p .  

P'7 - p(a2cos20 + s2) + 1 + 7ve s in  x = o 
zV 

P 

pa'cos 0 + 20 (zVcos o - p6 sin 0) + -P' v COS x cos Q = o (107)P e  

p6' + 262 + po 2sin 0 cos 0 + -v cos x sin + = 0 (108)
V w e  
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p ' - z  
V 

= o  
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“The aeronautical and space activities of the United States shall be 
conducted so as to contribute . . . to the expansion of human knowl­
edge of phenomena in the atmosphere and space. The Administration 
shall provide for the widest practicable and appropriate dissemination 
of information concerning i ts  activities and the results thereof.” 

-NATIONAL AERONAUTICSAND SPACE ACT OF 1958 

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS 

TECHNICAL REPORTS: Scientific and technical information considered 
important, complete, and a lasting contribution to existing knowledge. 

TECHNICAL NOTES: Information less broad in scope but nevertheless of 
importance as a contribution to existing knowledge. 

TECHNICAL MEMORANDUMS: Information receiving limited distribu­
tion because of preliminary data, security classification,or other reasons. 

CONTRACTOR REPORTS: Scientific and technical information generated 
under a NASA contract or grant and considered an important contribution to 
existing knowledge. 

TECHNICAL TRANSLATIONS: Information published in a foreign 
language considered to merit NASA distribution in English. 

SPECIAL PUBLICATIONS: Information derived from or of value to NASA 
activities. Publications include conference proceedings, monographs, data 
compilations, handbooks, sourcebooks, and special bibliographies. 

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on tech­
nology used by NASA that may be of particular interest in commercial and other 
non-aerospace applications. Publications include Tech Briefs, Technology 
Utilization Reports and Notes, and Technology Surveys. 

Details on the availabilify of these publications may be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

Washington, D.C. PO546 


